# NC Transportation Center of Excellence in Advanced Technology Safety and Policy (TSAP)

March 18, 2021





#### NCA&T Virtual Summer Transportation Institute Presentations





 On Wednesday, July 29<sup>th</sup>, Dr. Sean Tikkun, NCCU presented research on GPS and GIS for the Visually Impaired

13 rising high school juniors and seniors primarily from high schools across North Carolina





#### **TSAP Workforce Development & Dissemination**

- Graduate students presented TSAP research at the NCDOT Research & Innovation Summit, October 2020
- Dr. MacBride supported Dr. Radwan in recruiting Jonathan Withrow, 2020 NCA&T graduate, hired as research assistant for HSRC's COVID-19 Mobility and Health Impact study.
- Highlights from Dr. Park's TSAP project:
  - Larkin Folsom, Dr. John Park's doctoral student, defended his PhD thesis in Nov 2020. His research included a TSAP assignment routing model development
  - Dr. Park presented at 2021 TRB Annual meeting and has a paper for presentation at the 62nd annual meeting of the Transportation Research Forum (TRF) in April 2021
  - Dr. Park has a patent claim in preparation related to TSAP project





# Project 1: CAV-ready cities: Building the knowledge and practice base

Co-PIs: Tab Combs (UNC-Chapel Hill), Elizabeth Shay (Appalachian State University)





#### **Project Status - Overview**

| Task 1                                                                                                                | Task 2                                                                                                   | Task 3                                                    | Tasks 4-6                               |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| <ul> <li>preliminary<br/>analysis<br/>completed<br/>2020</li> <li>formal<br/>analysis<br/>now<br/>underway</li> </ul> | <ul> <li>preparation<br/>in 2020</li> <li>intersection<br/>visualization<br/>now<br/>underway</li> </ul> | <ul> <li>interim<br/>findings</li> <li>pending</li> </ul> | <ul> <li>delays<br/>expected</li> </ul> |



5

#### Status – Task 1

#### Goal: Build knowledge and identify CAV-readiness strategies







6

#### Status – Task 2

Goals: identify and apply appropriate visualization tools; translate CAV-readiness strategies into hypothetical interventions

- 1. Identify study sites (urban intersections in diverse contexts)
- 2. Identify appropriate visualization tools (for rendering and communication)
- 3. Create 3D renderings of existing and hypothetical CAVadapted configurations















#### **Visualization**

Best mix of accessibility, affordability, ease of use and time required to learn, and usefulness of output: SketchUp







9

#### Status – Task 3

Goal: synthesize and disseminate information on impacts to intersections

Write research paper and guide

- Summarize preliminary findings
- Submit manuscript to TRB
- Draft practitioner guide





#### **COVID19-related challenges**

- Task 4—intercept surveys
- Novel contribution
- Inadvisable/impractical during pandemic

Proposed schedule adjustment

- Pause study June 2021 May 2022
- Complete practitioner guide and Tasks 4-6 during year 3 of the COE



11



## **Specific needs?**

#### Suggestions for Charlotte intersections for renderings

- Walnut Ave/4<sup>th</sup> St Ext
- Rozzelles Ferry/W 5<sup>th</sup> St/Beatties Ford /W Trade St
- Romany Rd/Kenilworth Ave/Scott Ave
- S College St/E Morehead St
- W Tremont Ave/Camden Rd/LRT
- East Blvd/West Blvd/Camden Rd/LRT
- S Tryon/Camden Rd/W Summit Ave

- W Morehead St/Freedom Dr
- Berryhill Rd/Tuckaseegee Rd/Thrift Rd
- Romany Rd/Dilworth Rd
- Dilworth Rd/E Morehead/S. McDowell St
- E. Tremont/South Blvd
- South Blvd/East Blvd
- Shamrock Dr/Eastway Dr

#### Discussion on pausing after substantial completion of Task 3





#### Project 2: Solutions for Near Horizon Challenges in Smart City Pedestrian Travel

**PI:** <u>Dr. Sean Tikkun</u>, <u>NC Central University</u> Dr. William Wiener, NC Central University Dr. Srinivas Pulugurtha, UNC Charlotte











#### Goals

- Project 2.1: Assess needs and research on state-of-the-art technologies and analysis for pedestrian safety while preserving privacy
- Project 2.2: Investigate and develop protocol for mobile device communication with traffic control infrastructure, with initial application for pedestrians with a visual impairment
- Project 2.3: Develop protocol to deliver intersection information, to pedestrian devices, via wireless communication with standard allocentric language





#### Goals





#### **Pedestrian Travel**

- Demand for walkable and sustainable cities grow
- Quieter vehicles such as hybrid or electric present challenges
- Connected and autonomous vehicles in the future
- Challenges for pedestrians with visual impairments
  - Use of lowered engine noise
  - Use of pedestrian controls
  - Perception of the built environment
- Solutions within smart city design
  - Data collection
    - Video analysis of pedestrian information
    - Mobile device communication with traffic systems
    - Audio beaconing description through mobile devices





#### **Project 2.2: Mobile Device Communication** with Smart City Infrastructure to Improve Accessibility

Task 1: Calling the ped phase with a mobile device





#### **Use of Accessible Pedestrian Signals**

- Actuated and Semi-Actuated Traffic Control
- Dependence up accessible pedestrian signals
  - Extension of walk cycle
  - Assistance with determining when to cross
- Location of the APS





# Pushbutton within five feet of crosswalk line extended





#### Accessible Design for the Blind





#### **Pushbutton within 10 feet of the curb**



Accessible Design for the Blind





### **Street Crossing Steps**

- Pedestrian who is blind crossing at signalized intersections:
  - Approach corner and determine correct placement and alignment
  - Walk away to find pushbutton
  - Return to cross
  - No longer have proper alignment for a crossing
  - Must start and make alignment corrections while crossing





#### **Proposed Solutions to APS Location Issues**

- Direct pedestrian communication with traffic control system through pedestrian's smart phone
- Pedestrian with visual impairment can call for a ped cycle with a phone app
- Deaf-blind person can feel the start of walk cycle through phone vibrations





#### **Current Status**

- City of Cary going forward with Smart City Project
  - Will install Connected Vehicle Hardware/Software throughout the town
  - DSRC is being phased out and Cell Modem is being installed
- Once process has progressed, communication system between traffic control infrastructure and smart phone will be developed
- Working with Charles Strickland





#### **Next Steps**

- Subjects will be taken to an intersection in Carey where they will use their phones to call the pedestrian walk cycle
- This will be repeated twice more with different interfaces
- A questionnaire on the usefulness of the interfaces will be given to the subjects





#### **Project 2.3: Bluetooth Beaconing to Provide Information About the Intersection**

Task 2: communicating intersection features through the pedestrian's smart phone





# **Traffic Signalized Intersections**

#### **Complexity of Intersections**

- Direction of traffic
- Number of lanes
- Designated turn lanes
- Type of traffic control
- Bike Lanes
- Amount of traffic
- Consistency
- Location of APS
- Medians















## Previous Solution: Crosswalk Mapping



# Tactile map of crosswalk

- Symbols (from bottom of picture) for:
  - down curb,
  - bike lane
  - 2 lanes of cars from left
  - Island
  - rail line
  - 2 lanes of cars from right
  - up curb







# Raleigh

- Advent Ferry and Western Blvd.
- Offset corner
- Crosswalk misalignment
- Median islands
- APS at corners & on medians
- Dedicated turn lanes
- Multiple phasing
  - Protected-Only left turn (leading)
  - Protected-Only left turn (lagging)
  - Protected Permissive left turn
  - Right-Turn Overlap







Advent Ferry and Western Blvd Intersection





Nationwide responses of O&M Specialists who teach blind pedestrians to travel

Narrowed from 45 items to 11

Work zones included

| <b>*</b> | Field                                                                     | Minimum | Maximum | Mean | Std<br>Deviation | Variance | ▲<br>Count |
|----------|---------------------------------------------------------------------------|---------|---------|------|------------------|----------|------------|
| 1        | Names of the intersecting streets at the corner                           | 2.00    | 4.00    | 3.72 | 0.57             | 0.32     | 50         |
| 18       | Number of lanes to cross                                                  | 2.00    | 4.00    | 3.66 | 0.56             | 0.31     | 47         |
| 21       | Presence of accessible pedestrian signal                                  | 2.00    | 4.00    | 3.63 | 0.56             | 0.32     | 48         |
| 23       | Presence of a channelized turn lane                                       | 2.00    | 4.00    | 3.61 | 0.53             | 0.28     | 46         |
| 13       | Type of traffic control signalization                                     | 1.00    | 4.00    | 3.59 | 0.70             | 0.49     | 49         |
| 15       | Presence of a turn lane signal                                            | 2.00    | 4.00    | 3.58 | 0.60             | 0.36     | 50         |
| 38       | Presence of a work zone                                                   | 2.00    | 4.00    | 3.57 | 0.61             | 0.37     | 49         |
| 33       | When corner across the street is not in alignment with the current corner | 1.00    | 4.00    | 3.56 | 0.73             | 0.54     | 48         |
| 39       | Directions for negotiating the work zone                                  | 2.00    | 4.00    | 3.53 | 0.67             | 0.45     | 49         |
| 22       | Location of accessible pedestrian signal                                  | 2.00    | 4.00    | 3.52 | 0.68             | 0.47     | 46         |
| 25       | Presence of a median                                                      | 2.00    | 4.00    | 3.50 | 0.62             | 0.38     | 46         |





#### Experimentation and Data Collections: Communication of Environmental Information

#### • Accomplished:

- Identified critical features of environments through questionnaires to professionals in the field of O&M and pedestrians with visual impairments
- Developed a specific protocol for identifying and communicating features of an intersection for clarity using a combination of allocentric and egocentric language
- Training protocol established
- Thirteen human subjects identified

#### Next steps:

- Install temporary beacons intersection with high traffic control concentration and pedestrian destinations for trial
- Conduct human subject testing with blind pedestrians





## **Next Steps:**

- Install temporary beacons at selected intersection
- Train human subjects on protocol
- Conduct human subject testing with blind pedestrians.
- Researchers will be Individuals familiar with techniques used by blind travelers
  - Faculty members at NCCU
  - Students engaged in a research project at NCCU
- Workforce
  - Results to be presented at conferences
  - Research article to be submitted to Journal of Visual Impairment and Blindness, etc.
    - Faculty and students as authors





### Project 3: Operational and Economic Impacts of Connected and Autonomous Vehicles

**PI:** <u>Srinivas Pulugurtha</u>, Ph.D., P.E., F.ASCE, <u>UNC Charlotte</u>

#### **Co-Pls:**

Amirhossein Ghasemi, Ph.D., UNC Charlotte

Raghavan Srinivasan, Ph.D., UNC-Chapel Hill

Michael Clamann, Ph.D., UNC-Chapel Hill

Research Staff and Graduate Students at UNC-Charlotte:

- •Sonu Mathew, Ph.D.
- •Sarvani Duvvuri, M.S.,
- •Pouria K. Shahri, M.S.,
- •Swapneel R. Kodupuganti, M.S.,
- •Raghuveer P. Gouribhatla, M.S.
- •L. Sravya Jayanthi, B.Tech.





#### Goals

- Research on operational and safety performance of the transportation network at various penetration rates of CAV deployment
- Assess the impact of CAVs on the economy







## Methodology

- Task 1: Literature review
- Task 2: Model the operational effect of CAVs
- Task 3: Evaluate the economic impacts of CAVs
- Task 4: Prepare and submit a final report






# **Task 1: Literature Review**

| CAV characteristics and technology (10)                             | Levels of automation, intelligent vehicle technology classification                                          |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Modeling CAVs (26)                                                  | Intelligent vehicle types, simulation software, model development mechanism, advantages and disadvantages    |
| Effects of CAVs on operational performance (40)                     | Model development, evaluation criteria and penetration rates, major findings                                 |
| Effects of CAVs on safety (27)                                      | Model development, evaluation criteria and penetration rates, major findings                                 |
| Economic impacts of CAVs<br>(36)                                    | CAV deployment status over time, market dynamics trend, economic effect of CAVs, cost-based analysis of CAVs |
| Heterogeneous traffic<br>network control in CAV<br>environment (55) | Characteristics of heterogeneous traffic, control methods                                                    |





# **Modeling CAVs Using Simulation**

- Microscopic simulation is effective in modeling and evaluating complex designs
- Commonly used tools for CAV-simulation are
  - Microscopic: AIMSUN, NETSIM, cellular automata and PTV Vissim
  - Macroscopic: Emme, CORMAC, METANET, and system dynamics modeling
- Lack of implementation of realistic lane changing and vehicle communication in the past studies
- Microsimulation tools like PTV Vissim
  - Ideal for capturing surrogate measures (safety)
  - Can incorporate CAV control behavior through application programming interface (API)







## **Effects of CAVs on Operational Performance**

Performance measures

Throughput Average speed Travel time Travel time reliability Average speed Average density Delay Number of stops Fuel consumption

- Evaluation based on adaptive cruise control (ACC), cooperative adaptive cruise control (CACC), automated vehicle (AV), and CAV technology
- Likely to improve road operational performance at intermediate market penetration levels
  - Partial automation/low penetration may adversely affect road performance
- Vehicles with different levels of connectivity/automation will have different influence on each other
- Urban arterials with heterogenous traffic conditions





# **Effects of CAVs on Traffic Safety**

Performance measures

Crash frequency Crash type & severity Crash risk index Time to collision

Post encroachment time

Conflicts, ...



- Main assumption: Near elimination of human errors
- CAVs were modeled to be more cautious than human drivers
- Contradicting evidences from previous studies:
  - High CAV penetration improves safety
  - Self-driving cars are involved in more crashes compared to manually driven cars
- Main focus was on freeways; Not many focused on urban arterials, intersections, and vulnerable road user interactions







# **Economic Impacts of CAVs**

CAV deployment status

 Year- technology (example: V2V, V2I, ...)

Market dynamic trends

Economic

impacts /

cost-based

analysis

- CAV sales, future estimates
- Adoption rates
- COVID-19 impacts
- Vehicle ownership
- Safety benefits
- Travel time savings
- Reduced trips/ parking
- Congestion cost

- Driver error-induced crashes
  - Over half a million lives could be saved from 2035 to 2045
- Need to include emissions, operational and maintenance, congestion, etc., in the economic evaluation process
- CAV related data is not available
  Simulation tools





## **# of Fatal Crashes** & Crash Cost

- 1,369 fatal crashes in 2019 on NC roads (NCDOT)
- Comprehensive crash cost - \$30 billion per year

|                      | Year         | Number of Vehicles (Highest Level of Automation)<br>Involved in Fatal Crashes in US (NC) - FARS |                |                                          |             |              |               |      |  |  |
|----------------------|--------------|-------------------------------------------------------------------------------------------------|----------------|------------------------------------------|-------------|--------------|---------------|------|--|--|
|                      |              | Level 1                                                                                         |                | Level 2                                  |             | Level 0      |               |      |  |  |
| 2016<br>2017<br>2018 |              | 23 (1)                                                                                          |                | 23 (1)                                   | (1) 52      |              | 2,668 (1,346) |      |  |  |
|                      |              | 209 (7)                                                                                         | (7) 259 (5) 52 |                                          | 52,660 (1,2 | ,660 (1,294) |               |      |  |  |
|                      |              | 399 (13)                                                                                        |                | 703 (13) 51,184 (1,                      |             | 95)          |               |      |  |  |
|                      | 2019         | 346 (14)                                                                                        |                | 887 (23)                                 |             | 50,014 (1,2  | 47)           |      |  |  |
| Crash Cost           |              |                                                                                                 |                |                                          |             |              |               |      |  |  |
| US (2019)            |              |                                                                                                 | NC (2019)      |                                          |             |              |               |      |  |  |
| Severity             | Cost         |                                                                                                 |                | Injury Severity                          |             |              | Cost          |      |  |  |
| K                    | \$16,257,800 |                                                                                                 |                | Fatal Crash                              |             |              | \$10,310,000  |      |  |  |
| A                    | \$941,000    |                                                                                                 |                | A Injury Crash                           |             |              | \$613,000     |      |  |  |
| В                    | \$284,600    |                                                                                                 |                | B Injury Crash                           |             |              | \$206,000     |      |  |  |
| С                    | \$179,600    |                                                                                                 |                | C Injury Crash                           |             |              | \$120,000     |      |  |  |
| 0                    | \$16,900     |                                                                                                 |                | PDO Crash                                |             |              | \$12,500      |      |  |  |
| KA                   | \$2,764,700  |                                                                                                 |                | Injury Crash (F+A+B+C)                   |             |              | \$338,000     |      |  |  |
| KAB                  | \$706,100    |                                                                                                 |                | Non-fatal Injury Crash (A+B+C) \$168,000 |             |              |               | ,000 |  |  |
| KABC                 | \$441,000    |                                                                                                 |                | Severe Injury Crash                      |             |              | \$3,123,000   |      |  |  |
| KABCO                | \$121,400    |                                                                                                 |                | Moderate Injury Crash                    |             |              | \$145         | .000 |  |  |





## **Control Strategies to Improve the Performance of a Heterogeneous Traffic Network**



Hierarchal control strategies

- Macroscopic-based [Infrastructure-based] control
  - Variable speed limit, traffic signal control
- Microscopic-based control [vehicle-based]
  - Platooning, ACC
- Challenges
  - Unlimited/unknown interactions between different traffic streams resulting in uncertainty
  - Partial prescriptiveness resulting in conflict between the control strategies
- Possible solution
  - Learning-based control approaches





# Task 2: Model the Operational Effect of CAVs

- Select three geographically distributed transportation networks in North Carolina
- Develop a calibrated base model for each network
- Build hypothetical scenarios (models) based on penetration rate related growth factors
- Estimate operational and safety performance measures for each analytical scenario
  - Peak and off-peak hours





# Task 2: Model the Operational Effect of CAVs (Cont.)









# Task 2: Model the Operational Effect of CAVs (Cont.)

- CAVs behavior in simulation model Vissim Co-exist model
- Driving behavior attributes vehicle and lane specific
  - Car-following (gap, headway, lookback distance, etc.)
  - Lane changing (look ahead, cooperative lane change, acceleration parameters)
- Communication with surrounding vehicles and infrastructure (number of interaction objects)



Number of interaction objects and vehicles



#### Following distance





# Task 3: Evaluate the Economic Impacts of CAVs

- Operational and safety "impact" of CAVs
  - Trajectory files and conflicts
  - Compare conflicts with crashes for the base scenario / current conditions
  - Estimate # of crashes by the penetration rate
- Impact on the energy industry and other socio-economic factors (unemployment, insurance, manufacturing, etc.)
- Project to estimate impacts at state-level





# **Final Outputs**

- Final report with guidance to systematically assess the operational and economic impacts of CAVs over time
- Recommend suitable microscopic traffic simulation software (Vissim, TransModeler or other) to model and evaluate heterogeneous traffic networks
- Recommends appropriate methods to assess economic impacts





# Project 4: Intelligent Data Exploration & Analysis for New & Existing Transportation Technology (IDEANETT)

PI: Dr. Hyoshin (John) Park, NC A&T University

- Ph.D. Candidate: Larkin Folsom
- Ph.D. Student: Niharika Deshpande







### **Current Practice**

Currently, travelers receive reroute info from Variable Message Sign (VMS) & GPS Navigation.





waze😌



### **Challenges**

Oftentimes, many travelers detour to a local road.

- If stayed, delay < 9-min (VMS)
- If took a detour, time saved < 5-min (GPS)





Current reroute suggestions with wrong future expectation cause even more delay.





## Why Incorrectly Reroute, or Estimate Time Savings?

'Exit 157' : based on the assumption that all used paths will have equal and minimal travel times.



#### 🛧 Work Zone.

- Day-to-day travel behavior: already know the estimated delay after seeing construction for weeks.
- Could have already reached the user equilibrium: all path travel times are equal and minimum.



#### ★ Unexpected Congestion.

- Within-day travel behavior: it will take time to adjust an unexpected traffic congestion.
- It takes time to reach the user equilibrium: why don't we reroute travelers to minimize the total system travel time? System optimum (SO)

This project finds new SO routes based on anticipated network behavior over different time scales.





#### **Prototype Developed and Future Plans**

- ★ Mixed objective framework developed for a group of informed drivers to reduce the within-day congestion caused by uninformed drivers who are making day-to-day choices.
- ★ 20% informed drivers improves average travel time by 59.2% relative to the next day's solution.
- ★ Dissemination through TSL2020, TRB2021, TRF2021, Patent (to be filed), press release draft.
- ★ Tested in Sioux Falls Network and will be integrated with TransModeler in Turnpike model.



★ Developing TransModeler Script under the limited guidance of Caliper.





### **Immediate Implementation**

Update VMS exit information every 1-2 min.



- ★ TransModeler simulation run backend to provide the real-time traffic information as a result of recommended exit.
- ☆ Provide ranges of estimated delay 6~12 min, based on how many travelers reroute, will minimize the total system travel time to reach system optimum.

#### ~5 years Implementation

Targeted drivers will be informed through technologies (connected vehicle through onboard GPS navigation, or incentive-based participation similar to toll pricing scheme).







### **Goals & Objectives**

Strategic travel information sharing with travelers.

- $\star$  Key components to consider:
- How travelers perceive travel time uncertainty?
- How do we dynamically assign travelers?
- ★ The pricing scheme is not new, but the simulation-based anticipatory model is new.
- Integrate day-to-day (uninformed) user equilibrium and within-day (informed) system optimal.
- Uninformed drivers depend on memory of prior cost, if all, reach dynamic user equilibrium.
- Informed drivers' best routes based on predicted states.

- ★ Road networks contain uncertain travel information.
- <u>Road A</u> 8 min, +/- 0.5 min.
- <u>Road B</u> 6 min, +/- 5 min.







### **Algorithm Overview**

★ Network parameters are initialized.

★ Day-to-Day (DTD) Boundedly Rational Dynamic User Equilibrium (BRDUE) Dynamic Network Loading (DNL) loop begins.

☆ Path Marginal Cost (PMC) for the result of the first iteration of DTD BRDUE DNL is calculated.

- ★ Within-Day (WD) Dynamic System Optimal (DSO) DNL loop begins and runs until converged :
- After each inner loop iteration, the PMC is updated.
- $\star$  Outer DTD BRDUE DNL loop continues until the last day of simulation is

reached.







### **Dynamic Network Loading Link Dynamics**

★ Link occupancy is the difference between cumulative arrival and departure curves.

★ These curves are calculated using the Lighthill-Whitham-Richards (LWR) model and Triangular Fundamental Diagram.







## Methodology (Multi travelers + travel time correlation)

• Average travel time under bounded rational sequential route and departure time choice model.



• Disruptive period with high incident rate 50-100 days results in travelers learning the incident patterns, which persists for 6 days after period ends.



• The plot shows average perceived cost for each day and departure time window.





### **Dynamic Network Loading Junction Dynamics**

- Junction Dynamics are used to determine the proportion of drivers on an incoming link i who will select an outgoing link j.
- A matrix A<sup>N</sup>, where N is the set of junctions in the network, is constructed in to track the distribution of flows between connected links.

$$\mathcal{A}^{\mathcal{N}} = \alpha_{i,j}(t) \quad \forall i, j \in \mathcal{N}$$







#### **Dynamic Network Loading Junction Dynamics**

• The Path Marginal Cost (PMC) is defined as the increase in total system cost incurred when an additional unit of flow is added to the departure rate pattern,

$$PMC_{k,t} = PMC_{k,t}^{TT} + PMC_{k,t}^{SCD} + PC_{k,t}$$

- where PMC<sup>TT</sup><sub>k,t</sub> is the change in travel time cost for all other drivers caused by additional flow on route k at time t,
- PMC<sup>SCD</sup><sub>k,t</sub> is the change in schedule delay cost for all other drivers caused by the additional flow on route k at time t, and
- PC<sub>k,t</sub> is the perceived cost for an individual on route k at time t.





### **Simulation Network**

- The Sioux Falls Network used for evaluation.
- Contains 24 nodes, 76 links, 528 O-D pairs, and 6180 routes.
- Used extensively in transportation model development.
- Allows more objective comparisons with other models.
- Figure shows three possible paths between Nodes 1 and 4.







#### **Results Considering Day-to-Day and Within-Day Choice: Day 1**

- The Network perturbation occurs on Day 1 and **uninformed drivers** will switch their route and departure time choices on Day 2 based on their perception from the previous day.
- Delay reduction the **uninformed group** (80% of drivers), not change their original route and departure choice the **informed group** (20% of drivers) change to minimize congestion.







#### **Results Considering Day-to-Day and Within-Day Choice: Day 2**

- Adjusted departure rates after executing the DSO algorithm with Uninformed (80%) + Informed (20%) Departures lessen mid-period congestion noticeably.
- Because less congestion exists on Day 2, the potential improvement in average travel time by using DSO algorithm is reduced.







#### **O-D Gap Results by Percentage of Informed Drivers**

- Day 1 congestion reduction is most significant because of simulated perturbation. WD DSO works best under network perturbations which are predictable, but not foreseen by majority of **uninformed drivers**.
- Day 2 shows less median improvement due to learning by uninformed drivers, but worst case is improved.







#### **Conclusion**

- Within-Day delays are reduced by **informed drivers** whose route and departure time choices seek to minimize PMC.
- Even with a relatively low percentage of drivers seeking to minimize PMC, significant improvements are seen in average travel time and O-D Gap.
- In the case of congestion caused by an unforeseen network perturbation, having 20% informed drivers improves Day 1 average travel time by 59.2% relative to the next day's DTD BRDUE solution.
- Because **informed drivers** in this framework do not detour unless significant congestion is present, over Dayto-Day time scales the model approaches a BRDUE condition for any fraction of **informed drivers**.





#### **Dissemination Efforts**

- Presented at the Transportation Research Board (TRB) 2021 Annual Meeting.
- Will be Presented at the Transportation Research Forum (TRF) 2021 Annual Meeting.
- PhD Thesis Defended for Larkin Folsom in Fall 2020.
- Patent claims are in preparation.





# Project 5: Plan for Advanced Technology Data Readiness

Co-Pls: Dr. Michael Clamann, UNC-Chapel Hill and Dr. Srinivas Pulugurtha, UNC Charlotte





# **Project 5 Goals**

## Identify the CAV data public agencies need,

#### and

#### Map the data to public agency use cases to develop a NCDOT-specific framework for data readiness





# Methodology

- Task 1: Literature review
  - Year 1, HSRC researchers
- Task 2: Inventory of transportation data sources in North Carolina
  - Year 2 & 3, all investigators
- Task 3: Data needs for CAV development
  - Year 2 & 3, all investigators
- Task 4: Framework for data readiness
  - Year 3, all investigators





# Year 1 Goals

#### Task 1 (Literature Review)

- Peer-reviewed research and industry reports relevant to managing data to accommodate deployment of CAVs
- Federal guidance, plans drafted or implemented by other states











# **Results – Data Characteristics**

#### Metadata

User access levels (e.g., public, partners, DOT staff)

- Read/add/edit/delete
- Live/report/test
- Data portals
- 3<sup>rd</sup> party data set integration
- Processing
  - Upload method
  - Preprocessing (e.g., redacting PII)
  - Visualizations





# **Task 1 Deliverable**

Connected and Automated Vehicle Data Inventory (CAVDI)

- Structured list of CAV elements implemented or tested in other states
- Links data elements to current projects
- 7 data categories, 72 frames




## Next Steps...

Task 2: North Carolina transportation data source inventory

- Year 2 & 3, HSRC, UNC-Charlotte, Appalachian State
- Compile inventory of CAV-relevant data sources managed by NCDOT







#### clamann@hsrc.unc.edu





## **Project 5: Supplemental Information**





# **CAVDI Data Categories**

- Person
  - e.g., Surveys, permits, trip diaries, driver monitoring
- Vehicle
  - e.g., BSM, CAN bus, operational limits, sensors, origins/destinations
- Fleet
  - e.g., Company contact, fleet size, permits, user data
- Operational Domain
  - e.g., Road & intersection classes, road geometry, boundaries, speed limits
- Traffic
  - e.g., TIM, network events, closures and restrictions, crashes, volume, payments, 3<sup>rd</sup> party data
- Infrastructure
  - e.g., Roadside equipment, SPaT, weather, maps, video, connected devices, dynamic message signs, parking
- Crash
  - e.g., MMUCC 5 Dynamic Data Elements, ADS Data Logger





## Example: Vehicle Sensor Data Frame

- Ford Dataset (Rosbag format)
- Lidar scans
  - 4 scans @ 10 Hz
- Camera images
  - 7 separate 1.3 to 5 MP images @ 6 to 15 Hz
- IMU
  - Angular velocity and linear acceleration @ 200 Hz
- GPS
  - Time, latitude, longitude and altitude @ 200 Hz
- Global 3D Map
- Localized Pose
  - 5 files for location and rotation @200 Hz









## Example: Public Impression

- PAVE Poll (2020)
  - Nearly 75% of Americans say autonomous vehicle technology "is not ready for primetime"
  - 48% would "never get in a taxi or ride-share vehicle that was being driven autonomously"
  - 20% of Americans think AVs will never be safe
  - 60% would have greater trust in AVs if they "understood better how the technology works"
- AAA Vehicle Technology Survey (2019)
  - 71% of U.S. drivers would be afraid to ride in a fully self-driving vehicle
  - 53% of U.S. drivers would be comfortable with fully self-driving vehicles being used for people mover systems found at airports and theme parks
  - 19% of U.S. drivers would be comfortable with the use of fully self-driving vehicles to transport their children











### Learn more: tsap.unc.edu



